注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

王根喜的三联数字博客

我相信三联数字是一把打开宇宙奥秘的钥匙,愿更多的网友来参加研究。

 
 
 

日志

 
 

探讨量子纠缠的实质  

2012-08-13 20:13:23|  分类: 三联数字与科学 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
 

 

1.简介

具有量子纠缠现象的成员系统们,在此拿两颗以相反方向、同样速率等速运动之电子为例,即使一颗行至太阳边,一颗行至冥王星,如此遥远的距离下,它们仍保有特别的关联性(correlation);亦即当其中一颗被操作(例如量子测量)而状态发生变化,另一颗也会即刻发生相应的状态变化。如此现象导致了“鬼魅似的远距作用”(spooky action-at-a-distance)之猜疑,仿佛两颗电子拥有超光速的秘密通信一般,似与狭义相对论中所谓的局域性(locality)相违背。这也是当初阿尔伯特·爱因斯坦与同僚玻理斯·波多斯基、纳森·罗森于1935年提出以其姓氏字首为名的爱波罗悖论(EPR paradox)来质疑量子力学完备性之缘由。

2定义

  1935年,爱因斯坦、波多尔斯基和罗森( Einstein Podolsky and Rosen) 等人提出一种波,其量子态:

  其中x1 ,x2分别代表了两个粒子的坐标,这样一个量子态的基本特征是在任何表象下,它都不可以写成两个子系统的量子态的直积的形式:

这样的量子态称为纠缠态。

 

3.特点

   量子纠缠并非信息传递,事实上信息不可能从一个粒子传到另一个粒子。即使用光速将它们分开,信息也不可能在你测量时从一个地方传到另一个地方。

  量子力学是非定域的理论,这一点已被违背贝尔不等式的实验结果所证实,因此,量子力学展现出许多反直观的效应。量子力学中不能表示成直积形式的态称为纠缠态。纠缠态之间的关联不能被经典地解释。所谓量子纠缠指的是两个或多个量子系统之间存在非定域、非经典的强关联。量子纠缠涉及实在性、定域性、隐变量以及测量理论等量子力学的基本问题,并在量子计算和量子通信的研究中起着重要的作用。

多体系的量子态的最普遍形式是纠缠态,而能表示成直积形式的非纠缠态只是一种很特殊的量子态。历史上,纠缠态的概念最早出现在1935年薛定谔关于“猫态”的论文中。纠缠态对于了解量子力学的基本概念具有重要意义,近年来已在一些前沿领域中得到应用,特别是在量子信息方面。例如,量子远程通信。

 

4. 量子纠缠通过反空间的引力子及暗物质粒子来传递信息

如果引力子反速度的假设是正确的话,宇宙由除了正时空,应还存在着反时空。

由    这  与正好相反,所以 的数字结构表明宇宙中应该存在着反时空。由 数字结构推算出引力子及四种暗物质粒子 就存在于反时空。它们有质量、能量,不带电荷,对外的作用力是万有引力。

在反时空中,基本粒子可以用引力子,暗物质粒子以1.5×10^10m/s的反速度来传递信息,因引力子,暗物质粒子的反速并本身是超光速的,并且它们存在于反空间,在正空间只能测到信息传递的效应,而看不到传递信息的轨迹。而反空间就隐藏在正空间之中,这也许就是玻姆提出的量子力学的隐变量,玻姆认为,在量子世界中粒子仍然是沿着一条精确的连续轨迹运动的,只是这条轨迹不仅由通常的力来决定,而且还受到一种更微妙的量子势的影响。量子势由波函数产生,它通过提供关于整个环境的能动信息来引导粒子运动,正是它的存在导致了微观粒子不同于宏观物体的奇异的运动表现。玻姆理论最引人注目之处在于它对测量的处理。在这一理论中,量子系统的性质不只属于系统本身,它的演化既取决于系统同时也取决于测量仪器。因此,关于隐变量的测量结果的统计分布将随实验装置的不同而不同。正是这个整体性特征保证了玻姆的隐变量理论与量子力学(对于测量结果)具有完全相同的预测。然而,它也导致了一个令人极不舒服的结果。根据玻姆理论的预言,尽管它为粒子找回了轨迹,但却是一条永远不可见的轨迹,理论中引入的隐变量—粒子的确定的位置和速度都是原则上不可测知的。人们永远无法知道粒子实际的运动轨迹,对它们的测量将总是产生与量子力学相一致的结果。此外,玻尔理论所假设的另一物理实在波函数同样是不可探测的隐变量,因为对单个粒子的物理测量一般只产生一个关于粒子性质的确定的结果,而根本测不到任何平场的性质。

 

5量子纠缠通过普朗克力子来传递信息

在物理学中,量子纠缠是指存在这样一些态:A,B,C,…,在t<t0时,这些态之间不存在任何相互作用。当t>t0时,它们的状态由Hibert空间HA,HB,HC...,中的矢量| Ψ(t)>A,| Ψ(t)>B,| Ψ(t)>C,.…所描述,由A,B,C空间构成的量子系统ABC则由Hibert空间HABC...=.HA ×HB ×HC...中矢量| Ψ(t)>A,| Ψ(t)>B,| Ψ(t)>C所描述,则这样的态被称为比Hibert空间的直积态,否则称态| Ψ(t)>A,| Ψ(t)>B,| Ψ(t)>C,.…是纠缠态,也就是说,如果存在纠缠态,就至少要有两个以上的量子态进行叠加。量子纠缠告诉我们在两个或两个以上的稳定粒子间,会有强的量子关联。例如在双光子纠缠态中,向左(或向右)运动的光子既非左旋,也非右旋,既无所谓的x偏振,也无所谓的y偏振,实际上无论自旋或其投影,在测量之前并不存在。在未测之时,二粒子态本来是不可分割的。量子纠缠所代表的在量子世界中的普遍量子关联则成为组成世界的基本的关联关系。或许用纠缠的观点来解释“夸克禁闭”之谜,更加有利于我们的理解。当一个质子处于基态附近的状态时,它的各种性质可以相当满意地用三个价夸克的结构来说明。但是实验上至今不能分离出电荷为2e/3的u夸克或(-e/3)的d夸克,这是由于夸克之间存在着极强的量子关联,后者是如此之强,以至于夸克不能再作为普通意义下的结构性粒子。我们通常所说的结构粒子a和b组成一个复合粒子c时的结合能8远小于a和b的静能之和,a或b的自由态与束缚态的差别是不大的。而现在核子内的夸克在“取出”的过程中大变而特变,最后我们看到的只能是整数电荷的,介子等强子。同一个质子,在不同的过程中有不同的表现,在理解它时需要考虑不同的组分和不同的动力学。在不断涌现的新的实验面前,我们长期习惯的物质结构观已经显得过时,一个质子在本质上是一个无限的客体。

那量子纠缠的根源是什么呢?如果我们假设普朗克力是宇宙的大统一力是正确的话,我们可以这样推论:量子纠缠的根源是粒子间的普朗克力子的运动,因普朗克力子的运行速度为1.5×10^33m/s。如此高的速度,不管它们被分开多远,对一个粒子扰动,另一个粒子(不管相距多远)立即就知道了。

 

 

 

 

 

  评论这张
 
阅读(128)| 评论(0)
推荐 转载

历史上的今天

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017