注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

王根喜的三联数字博客

我相信三联数字是一把打开宇宙奥秘的钥匙,愿更多的网友来参加研究。

 
 
 

日志

 
 

浅谈基本粒子的波粒二象性的根源  

2012-08-11 16:27:46|  分类: 三联数字与科学 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
 

  

 

 

1.基本粒子波粒二象性的概念

波粒二象性(wave-particle duality)是指某物质同时具备的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念

在十九世纪末,日臻成熟的原子理论逐渐盛行,根据原子理论的看法,物质都是由微小的粒子——原子构成。比如原本被认为是一种流体的电,由汤普森的阴极射线实验证明是由被称为电子的粒子所组成。因此,人们认为大多数的物质是由粒子所组成。而与此同时,波被认为是物质的另一种存在方式。波动理论已经被相当深入地研究,包括干涉衍射等现象。由于光在托马斯·杨的双缝干涉实验中,以及夫琅和费衍射中所展现的特性,明显地说明它是一种波动。

光量子-模型图

  不过在二十世纪来临之时,这个观点面临了一些挑战。1905年由阿尔伯特·爱因斯坦研究的光电效应展示了光粒子性的一面。随后,电子衍射被预言和证实了。这又展现了原来被认为是粒子的电子波动性的一面。

  这个波与粒子的困扰终于在二十世纪初由量子力学的建立所解决,即所谓波粒二象性。它提供了一个理论框架,使得任何物质在一定的环境下都能够表现出这两种性质。量子力学认为自然界所有的粒子,如光子、电子或是原子,都能用一个微分方程,如薛定谔方程来描述。这个方程的解即为波函数,它描述了粒子的状态。波函数具有叠加性,即,它们能够像波一样互相干涉和衍射。同时,波函数也被解释为描述粒子出现在特定位置的几率幅。这样,粒子性和波动性就统一在同一个解释中。

之所以在日常生活中观察不到物体的波动性,是因为他们的质量太大,导致特征波长比可观察的限度要小很多,因此可能发生波动性质的尺度在日常生活经验范围之外。这也是为什么经典力学能够令人满意地解释“自然现象”。反之,对于基本粒子来说,它们的质量和尺度决定了它们的行为主要是由量子力学所描述的,因而与我们所习惯的图景相差甚远。

 

2.德布罗意假设

 爱因斯坦提出光的粒子性后,路易·维克多·德布罗意做了逆向思考,他在论文中写到:19世纪以来,只注重了光的波动性的研究,而忽略了粒子性的研究,在实物粒子的研究方面,是否犯了相反的错误呢?1924年,他又注意到原子中电子的稳定运动需要引入整数来描写,与物理学中其他涉及整数的现象如干涉和振动简正模式之间的类似性,由此构造了德布罗意假设,提出正如光具有波粒二象性一样,实物粒子也具有波粒二象性。他将这个波长λ和动量p联系为:λ=h/p=h/mv

普朗克尺度-模型图

  m:质量 v:速度 h:普朗克常数

  这是对爱因斯坦等式的一般化,因为光子的动量为p = E / c(c为真空中的光速),而λ = c / ν。

  德布罗意的方程三年后通过两个独立的电子散射实验被证实。在贝尔实验室Clinton Joseph Davisson和Lester Halbert Germer以低速电子束射向镍单晶获得电子经单晶衍射,测得电子的波长与德布罗意公式一致。在阿伯丁大学,G·P汤姆孙以高速电子穿过多晶金属箔获得类似X射线在多晶上产生的衍射花纹,确凿证实了电子的波动性;以后又有其他实验观测到氦原子、氢分子以及中子的衍射现象,微观粒子的波动性已被广泛地证实。根据微观粒子波动性发展起来的电子显微镜电子衍射技术和中子衍射技术已成为探测物质微观结构和晶体结构分析的有力手段。

 

3.玻恩概率波

光和微观粒子的波粒二象性如何统一的问题是人类认识史上最令人困惑的问题,至今不能说问题已经完全解决(卢瑟福的α粒子散射实验证明物质的结构是核式的(这种模型被称为核式结构模型),原子如此,光子、电子、质子、大到天体都有自己的核心,都有绕核心运动的物质存在,每个核式结构体在运动中由于核式结构的特点,都做具有波动的直线运动,都有测不准的因素(不确定性原理)存在,都有量子化的物理特征,各有能级的存在,各有特定的能量吸收才可以发生跃迁。1926年M.玻恩提出概率波解释,较好地解决了这个问题。按照概率波解释,描述粒子波动性所用的波函数Ψ(x、y、z、t)是概率波,而不是什么具体的物质波;波函数的绝对值的平方|ψ|2=ψ*ψ表示时刻t在x、y、z处出现的粒子的概率密度,ψ*表示ψ 的共轭波函数。在电子通过双孔的干涉实验中,|ψ|2=|ψ1+ψ2|2=|ψ1|2+|ψ2|2+ψ1*ψ2+ψ1ψ2*,强度|ψ|2大的地方出现粒子的概率大 ,相应的粒子数多,强度弱的地方,|ψ|2小,出现粒子的概率小,相应的粒子数少,ψ1*ψ2+ψ1ψ2*正是反映干涉效应的项,不管实验是在粒子流强度大的条件下做的,还是粒子流很弱,让粒子一个一个地射入,多次重复实验,两者所得的干涉条纹结果是相同的。

  在粒子流很弱、粒子一个一个地射入多次重复实验中显示的干涉效应表明,微观粒子的波动性不是大量粒子聚集的性质,单个粒子即具有波动性。于是,一方面粒子是不可分割的,另一方面在双孔实验中双孔又是同时起作用的,因此,对于微观粒子谈论它的运动轨道是没有意义的。

由于微观粒子具有波粒二象性,微观粒子所遵从的运动规律不同于宏观物体的运动规律,描述微观粒子运动规律的量子力学也就不同于描述宏观物体运动规律的经典力学。

 

4薛定谔方程

    量子力学中求解粒子问题常归结为解薛定谔方程或定态薛定谔方程。薛定谔方程广泛地用于原子物理、核物理和固体物理,对于原子、分子、核、固体等一系列问题中求解的结果都与实际符合得很好。

  薛定谔方程仅适用于速度不太大的非相对论粒子,其中也没有包含关于粒子自旋的描述。当计及相对论效应时,薛定谔方程由相对论量子力学方程所取代,其中自然包含了粒子的自旋

.薛定谔提出的量子力学基本方程 。建立于 1926年。它是一个非相对论的波动方程。它反映了描述微观粒子的状态随时间变化的规律,它在量子力学中的地位相当于牛顿定律对于经典力学一样,是量子力学的基本假设之一。设描述微观粒子状态的波函数为Ψ(r,t),质量为m的微观粒子在势场U(r,t)中运动的薛定谔方程为。在给定初始条件和边界条件以及波函数所满足的单值、有限、连续的条件下,可解出波函数Ψ(r,t)。由此可计算粒子的分布概率和任何可能实验的平均值(期望值)。当势函数U不依赖于时间t时,粒子具有确定的能量,粒子的状态称为定态。定态时的波函数可写成式中Ψ(r)称为定态波函数,满足定态薛定谔方程,这一方程在数学上称为本征方程,式中E为本征值,是定态能量,Ψ(r)又称为属于本征值E的本征函数。

 

5基本粒子出现波粒二象性的根源

   所有基本粒子都存在波粒二象性,这是因为所有基本粒子都具有1分为5与合5为1的情况。当基本粒子合5为1时,一个基本粒子所处的5种状态合成1个整体,这样基本粒子表现为粒子性的特点。例如我们用 的形式表示电子具有粒子的特性:那将电子的5种状态合5为1时电子具有粒子的特性。把电子的5种状态 收敛互三联数字得:

 

 


 

 

 

当基本粒子1分为5时,则基本粒子表现为波动性。例如电子,我们可以用 来表示一个电子的形式:现将其展开得:

 

 

 

 

 

这说明一个电子1分为5个相同的电子状态,那5个相同的电子状态肯定存在着微小的相位差,正是这些微小的相位差,才是这个5个相同的电子态不能重叠成一个电子,而是叠加成粒子波。

因此对于所有的基本粒子,1个基本粒子分成相同的5种粒子状态,那这个粒子就表现为粒子波,当5种基本粒子状态合5为1,则这个基本粒子表现为粒子性。这就是基本粒子固有的两面属性,这是基本粒子出现波粒二象性的根源。基本粒子的波动性也可以理解为粒子的弦性。

 

 

 

 

  评论这张
 
阅读(113)| 评论(0)
推荐 转载

历史上的今天

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017